Usetutoringspotscode to get 8% OFF on your first order!

  • time icon24/7 online - support@tutoringspots.com
  • phone icon1-316-444-1378 or 44-141-628-6690
  • login iconLogin

How do you evaluate the integral of ##cscx dx## between the interval ##[pi/2,pi]##?

To find the integral of ##intcscxdx## between [##pi/2##,##pi##], use this theorem : ##intcscx## = Ln ##abs(cscx+cotx)##+c

when written in proper notation it should look like this: ##int_(pi/2)^(pi)cscxdx## ##[Ln(abs(cscx+cotx) )]_(pi/2)^(pi)##

to evaulate, you must plug in both upper and lower limits to the antiderivative then subtract the lower limit from the upper limit.

However, ##csc(pi)## does not exist. On the graph below, the region from ##csc(pi/2)## onwards goes to infinity because there is no upper bound, so the answer to the integral is ##+oo##. graph{cscx [-1.47, 6.324, -0.558, 3.338]}


You can leave a response, or trackback from your own site.

Leave a Reply

Powered by WordPress | Designed by: Premium WordPress Themes | Thanks to Themes Gallery, Bromoney and Wordpress Themes