Bob can overhaul a boat’s diesel inboard engine in 15 hours. His apprentice takes 30 hours to do the same job. How long would it take them working together assuming no gain or loss in efficiency?Q1. Bob can overhaul a boat’s diesel inboard engine in 15 hours. His apprentice takes 30 hours to do the same job. How long would it take them working together assuming no gain or loss in efficiency?
a. 10 hr
b. 45 hr
c. 6 hr
d. 4 hr
Q2. Solve the equation.
https://www.umtweb.edu/SRM/GP/MATH%20105/4/images/f1q101g1.jpg= 1
a. https://www.umtweb.edu/SRM/GP/MATH%20105/4/images/f1q101g2.jpg
b. https://www.umtweb.edu/SRM/GP/MATH%20105/4/images/f1q101g3.jpg
c. https://www.umtweb.edu/SRM/GP/MATH%20105/4/images/f1q101g4.jpg
d. no real solution
Q3. Write the expression in the standard form a + bi.
If w = 9 + 4i, evaluate w – https://www.umtweb.edu/SRM/GP/MATH%20105/4/images/f1q71g1.jpg.
a. 0
b. 18
c. -18 + 8i
d. 8i
Q4. Solve the equation by the Square Root Method.
(2x + 3)2 = 25
a. {1, 4}
b. {-14, 14}
c. {-4, 1}
d. {0, 1}
Q5. Write the expression in the standard form a + bi.
https://www.umtweb.edu/SRM/GP/MATH%20105/4/images/f1q3g1.jpg
a. https://www.umtweb.edu/SRM/GP/MATH%20105/4/images/f1q3g2.jpgi
b. https://www.umtweb.edu/SRM/GP/MATH%20105/4/images/f1q3g3.jpg
c. – https://www.umtweb.edu/SRM/GP/MATH%20105/4/images/f1q3g4.jpg
d. – https://www.umtweb.edu/SRM/GP/MATH%20105/4/images/f1q3g5.jpgi
Q6. How much pure acid should be mixed with 2 gallons of a 50% acid solution in order to get an 80% acid solution?
a. 3 gal
b. 5 gal
c. 8 gal
d. 1 gal
Q7. Find the real solutions, if any, of the equation. Use the quadratic formula.
9×2 – 48x + 64 = 0
a. {https://www.umtweb.edu/SRM/GP/MATH%20105/4/images/f1q136g1.jpg, -24}
b. {https://www.umtweb.edu/SRM/GP/MATH%20105/4/images/f1q136g2.jpg}
c. {- https://www.umtweb.edu/SRM/GP/MATH%20105/4/images/f1q136g3.jpg}
d. no real solution
Q8. Find an equation for the line with the given properties. Express the answer using the general form of the equation of a line.
Containing the points (-4, -2) and (0, -9)
a. 7x – 4y = 36
b. -7x – 4y = 36
c. 2x – 9y = -81
d. -2x + 9y = -81
Q9. Find an equation for the line with the given properties. Express the answer using the general form of the equation of a line.
Perpendicular to the line -4x + 5y = -23; containing the point (-3, 7)
a. -3x – 5y = -23
b. -4x – 5 = -4
c. -5x + 4y = -13
d. -5x – 4y = -13
Q10. Find the real solutions of the equation by factoring.
2x – 5 = https://www.umtweb.edu/SRM/GP/MATH%20105/4/images/f1q124g1.jpg
a. {- https://www.umtweb.edu/SRM/GP/MATH%20105/4/images/f1q124g2.jpg, 3}
b. {https://www.umtweb.edu/SRM/GP/MATH%20105/4/images/f1q124g3.jpg, – https://www.umtweb.edu/SRM/GP/MATH%20105/4/images/f1q124g4.jpg}
c. {-2, 3}
d. {- https://www.umtweb.edu/SRM/GP/MATH%20105/4/images/f1q124g5.jpg, 2}
Q11. Write the standard form of the equation of the circle with radius r and center (h, k).
r = 12; (h, k) = (5, 0)
a. x2 + (y + 5)2 = 12
b. x2 + (y – 5)2 = 12
c. (x – 5)2 + y2 = 144
d. (x + 5)2 + y2 = 144
Q12. Write the standard form of the equation of the circle with radius r and center (h, k).
r = 3; (h, k) = (0, 0)
a. x2 + y2 = 9
b. (x – 3)2 + (y – 3)2 = 9
c. x2 + y2 = 3
d. (x – 3)2 + (y – 3)2 = 3
Q13. Solve using the quadratic formula. Round any solutions to two decimal places.
https://www.umtweb.edu/SRM/GP/MATH%20105/4/images/f1q96g1.jpgx2 – 2https://www.umtweb.edu/SRM/GP/MATH%20105/4/images/f1q96g2.jpgx = 3
a. {-0.21, 14.67}
b. {0.82, -14.67}
c. {-0.82, 14.67}
d. {0.21, -14.67}
Q14. If (9, -2) is the endpoint of a line segment, and (6, 2) is its midpoint, find the other endpoint.
a. (3, 6)
b. (17, -8)
c. (3, -6)
d. (15, -10)
Q15. Find an equation for the line with the given properties. Express the answer using the slope-intercept form of the equation of a line.
Parallel to the line y = -3x; containing the point (2, 3)
a. y – 3 = -3x – 2
b. y = -3x – 9
c. y = -3x + 9
d. y = -3x
Q16. Find the real solutions of the equation by factoring.
x2 – 49 = 0
a. {7}
b. {7, -7}
c. {49}
d. {-7}
Q17. A chemist needs 60 milliliters of a 45% solution but has only 35% and 65% solutions available. Find how many milliliters of each that should be mixed to get the desired solution.
a. 20 ml of 35%; 40 ml of 65%
b. 10 ml of 35%; 50 ml of 65%
c. 40 ml of 35%; 20 ml of 65%
d. 50 ml of 35%; 10 ml of 65%
Q18. Solve the equation.
|x – 6| = 0
a. {-6}
b. {6}
c. {-6, 6}
d. no real solution
Q19. Find an equation for the line with the given properties. Express the answer using the slope-intercept form of the equation of a line.
horizontal; containing the point (1.9, -4.7)
a. y = 1.9
b. y = 2.8
c. y = 0
d. y = -4.7
Q20. An experienced bank auditor can check a bank’s deposits twice as fast as a new auditor. Working together it takes the auditors 4 hours to do the job. How long would it take the experienced auditor working alone?
a. 12 hr
b. 8 hr
c. 4 hr
d. 6 hr